Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
J Appl Physiol (1985) ; 132(4): 1069-1079, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142558

RESUMEN

The submarine working and living environment is an isolated, confined, and extreme (ICE) environment where a continuous on-watch is required to fulfill the tactical objectives. The current study examined whether a physiological and behavioral adjustment to an operational watch standing scheme occurred in terms of hormonal secretion (i.e., melatonin and cortisol) and sleep during a 67-day undersea mission. The crew followed a strict scheme of watch-on blocks at 0:00-06:00 h and at 12:00-18:00 h (group 1, diurnal sleep group) or watch-on blocks at 06:00-12:00 h and 18:00-24:00 h (group 2, nocturnal sleep group). We sampled saliva during the operational blocks over a 24-h period at day 55 of the mission and collected sleep actigraphy data during the entire mission in 10 participants. Sleep showed a biphasic split pattern with significantly unequal distributions of total sleep time (TST) and sleep efficiency (SE) between the two sleeping blocks, i.e., one long and one short sleep bout. Melatonin secretion showed no adjustment at the end of the mission to the watch standing blocks, following an endogenous circadian rhythm independent from the social zeitgebers with indications of a phase shift. Cortisol secretion however matched the biphasic work-sleep shift routine. Human physiology does not fully obey operational needs and there are differences in adjustment between melatonin and cortisol. A watch standing schedule that provides a balance between physiology and operationality still needs to be established. The potential adaptation effects of bright light therapy and melatonin supplementation should be investigated in future research.NEW & NOTEWORTHY The current study has a unique character due to the field context in which the data were collected. Data on long-term submarine missions are scarce and valuable in terms of operational and ecological validity. Moreover, the results are important both from a scientific and operational point of view, showing that human physiology does not fully obey operational needs and that there are differences in adjustment dependent from the type of circadian hormone.


Asunto(s)
Melatonina , Personal Militar , Ritmo Circadiano/fisiología , Humanos , Hidrocortisona , Sueño/fisiología
3.
J Appl Physiol (1985) ; 122(4): 788-794, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082331

RESUMEN

Sleep complaints are consistently cited as the most prominent health and well-being problem in Arctic and Antarctic expeditions, without clear evidence to identify the causal mechanisms. The present investigation aimed at studying sleep and determining circadian regulation and mood during a 4-mo Antarctic summer expedition. All data collection was performed during the continuous illumination of the Antarctic summer. After an habituation night and acclimatization to the environment (3 wk), ambulatory polysomnography (PSG) was performed in 21 healthy male subjects, free of medication. An 18-h profile (saliva sampling every 2 h) of cortisol and melatonin was assessed. Mood, sleepiness, and subjective sleep quality were assessed, and the psychomotor vigilance task was administered. PSG showed, in addition to high sleep fragmentation, a major decrease in slow-wave sleep (SWS) and an increase in stage R sleep. Furthermore, the ultradian rhythmicity of sleep was altered, with SWS occurring mainly at the end of the night and stage R sleep at the beginning. Cortisol secretion profiles were normal; melatonin secretion, however, showed a severe phase delay. There were no mood alterations according to the Profile of Mood States scores, but the psychomotor vigilance test showed an impaired vigilance performance. These results confirm previous reports on "polar insomnia", the decrease in SWS, and present novel insight, the disturbed ultradian sleep structure. A hypothesis is formulated linking the prolonged SWS latency to the phase delay in melatonin.NEW & NOTEWORTHY The present paper presents a rare body of work on sleep and sleep wake regulation in the extreme environment of an Antarctic expedition, documenting the effects of constant illumination on sleep, mood, and chronobiology. For applied research, these results suggest the potential efficiency of melatonin supplementation in similar deployments. For fundamental research, these results warrant further investigation of the potential link between melatonin secretion and the onset of slow-wave sleep.


Asunto(s)
Privación de Sueño/fisiopatología , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Sueño/fisiología , Aclimatación/fisiología , Afecto/fisiología , Regiones Antárticas , Nivel de Alerta/fisiología , Ritmo Circadiano/fisiología , Expediciones , Humanos , Hidrocortisona/metabolismo , Iluminación , Masculino , Melatonina/metabolismo , Polisomnografía/métodos , Desempeño Psicomotor/fisiología , Saliva/metabolismo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA